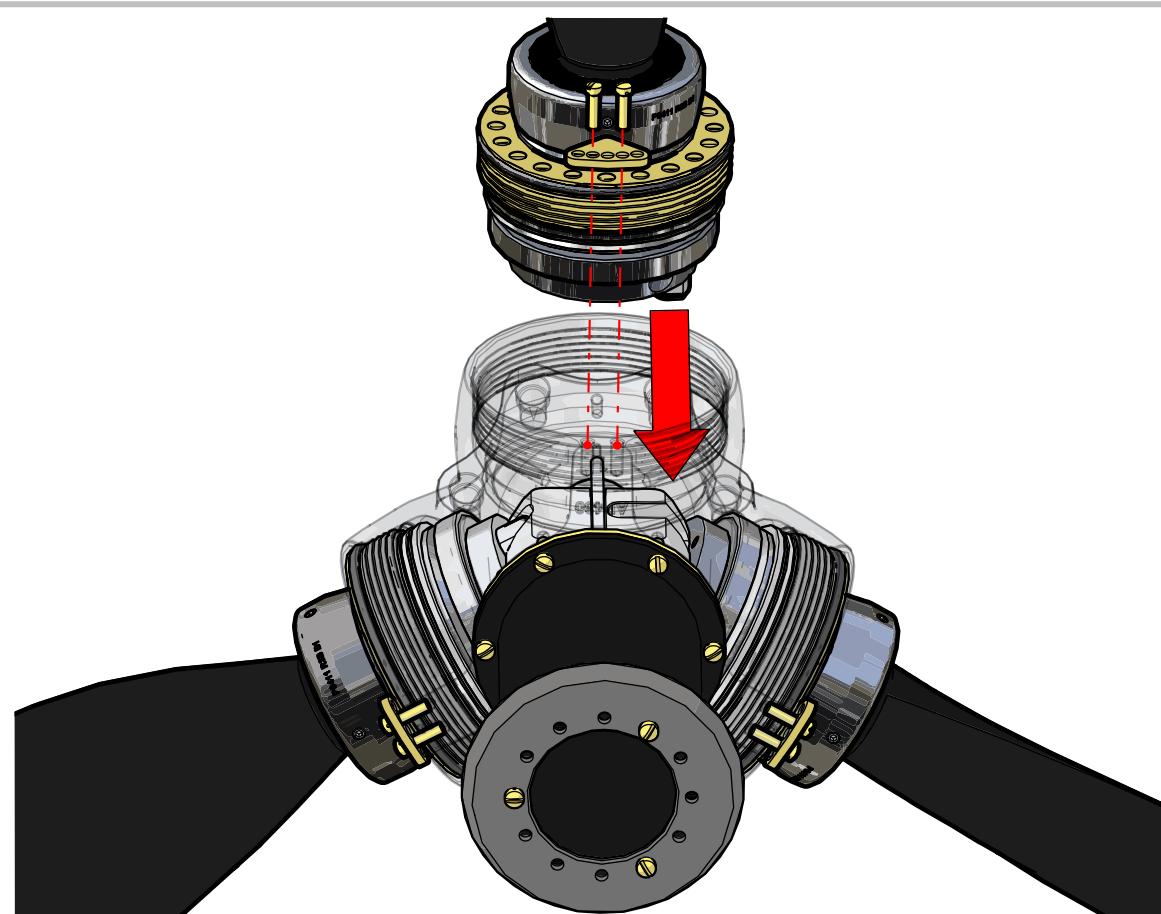


REVISION	CHANGE	APPROVED	DATE
1	Published release	JTS	27/11/2025

Airmaster


Airmaster Propellers Ltd
20 Haszard Rd, Massey,
Auckland 0614, NZ

Phone: (+64) 9 833 1794
E-mail: support@propellor.com
Web: www.propellor.com

ASI-4-6

BLADE INSTALLATION

PROCEDURE

SUBJECT:

Blade Installation

ASSEMBLY NO:

AH-xxx | AB-xxx

APPLICABILITY:

All propeller models excluding
AP332(S)

1. TOPIC

1.1 Introduction

This document covers the procedure for installing Airmaster blade assemblies into the propeller hub.

Each blade is matched to a specific hub port number, as configured when the propeller was statically balanced. The blade number is scribed on the cam plate at the base of each blade. Installers must ensure that blades are installed in the designated hub port configuration.

Installers must also ensure that the propeller hub and blade retention assemblies are correctly lubricated before blade installation. Excess grease in this region can create a hydraulic effect, which may prevent proper torque application and potentially cause damage to the propeller or engine.

Before locking the blade retention nut, installers must check that each blade is fully seated inside the hub. Improper blade seating can result in propeller imbalance, leading to potential damage to the propeller or engine. Recommended blade seating checks are provided in this document.

① Note

The blade installation procedure for AP332(S) propeller models differs due to an alternative retention nut design. This method is covered in the Airmaster Operator's Manual R5.

1.2 Prerequisites

Complete the following tasks before proceeding:

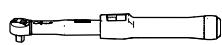
- Mount hub to engine flange in accordance with the applicable installation procedure.

① Note

This is the recommended method, however in some cases, installers may find it easier to install the blades into the hub prior to mounting the hub to the engine flange.

- Lubricate propeller hub in accordance with procedure **ASI-4-5**.
- Lubricate each blade retention assembly in accordance with procedure **ASI-4-5**.

⚠ Caution


Ensure that greased surfaces are not contaminated with dust or other debris.

2. MATERIAL REQUIREMENTS

2.1 Parts

ITEM	QTY	PART NO.	DESCRIPTION	IMAGE
1.	1	AH-xxx	Airmaster Hub Assembly	
2.	As required	AB-xxx	Airmaster Blade Assembly	

2.2 Tooling

ITEM	QTY	DESCRIPTION	IMAGE
1.	1	Blade Assembly Spanner (AT-x)	
2.	1	Torque Wrench (3/8" Square Drive)	
3.	1	Twist Pliers	
4.	1	Wire Cutter	

2.3 Consumables

ITEM	QTY	DESCRIPTION	IMAGE
1.	As required	0.025" Stainless Steel Lockwire (Safety Wire)	

3. PROCEDURE

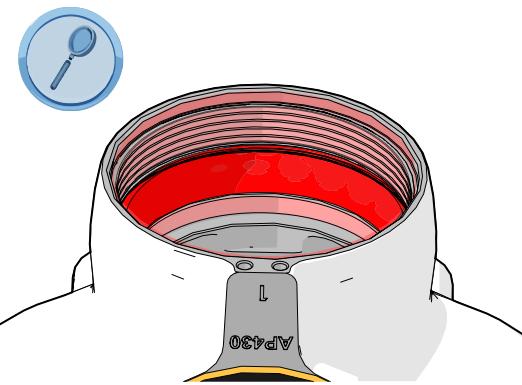
① WARNING

Ensure that aircraft power is turned off, especially before rotating engine flange.

① WARNING

Proper installation of the blade assemblies is imperative for safe function of the propeller and ensuring the safety of the pilot. Installers must ensure that the final blade seating checks are performed after the blades are fitted inside the hub and before they are locked.

3.1 Preparation

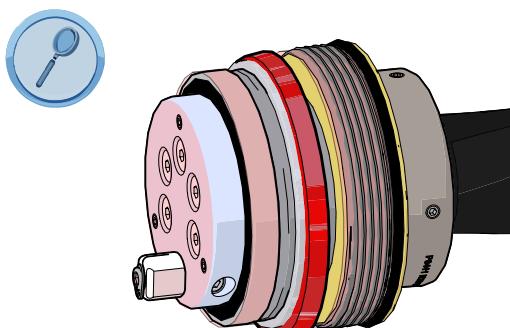

PROCEDURE

Step 1 Inspect Hub Ports

- Inspect each hub port for signs of damage or defect (e.g. nicks, burrs or corrosion).
- Check hub ports are lubricated correctly in accordance with procedure **ASI-4-5**.

① Note

A thin film of grease should be applied to all bores and threads inside the hub port. Only the larger thrust bearing bore should be packed with grease to immerse the blade's thrust bearing pack.



Step 2 Inspect Blade Assemblies

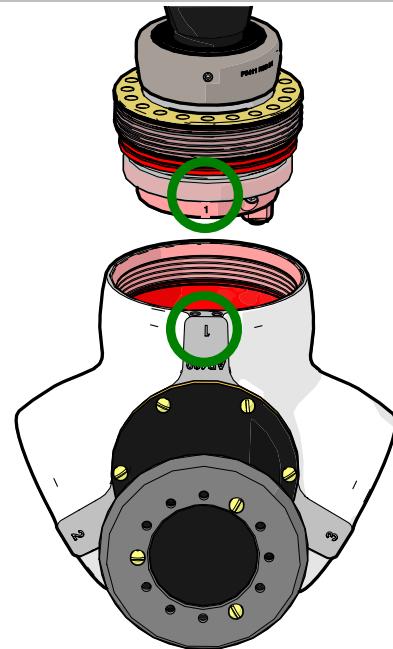
- Inspect each blade retention assembly for signs of damage or defect. Pay close attention to the threads of the retention nut and the thrust bearing elements.
- Check blade retention assemblies are lubricated correctly in accordance with procedure **ASI-4-5**.

① Note

All external surfaces of the blade retention assembly should be lightly lubricated, including the o-ring fitted to the retention nut. The thrust bearing pack should be filled with grease.

3.2 Seat Blade Assembly into Hub

PROCEDURE


Step 1 Match Blade to Hub Port

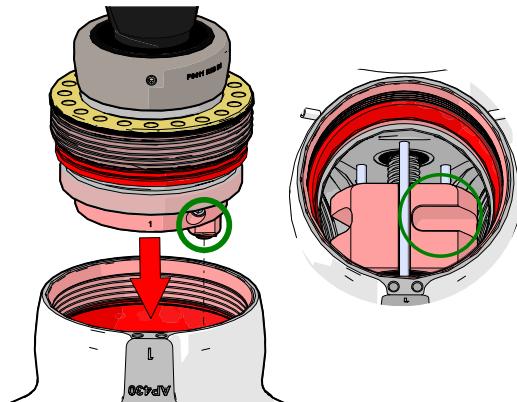
- If operable, drive propeller to the coarse pitch limit stop (COARSE lamp illuminates green on controller) to facilitate easier blade installation.
- Retrieve (1) blade assembly and note the blade number scribed on the cam plate (base).

Note

Each blade assembly is marked with a single digit number on the side of the cam plate. This indicates the corresponding hub port number.

- Orient the corresponding hub port number face up, enabling the blade to be installed vertically.

WARNING

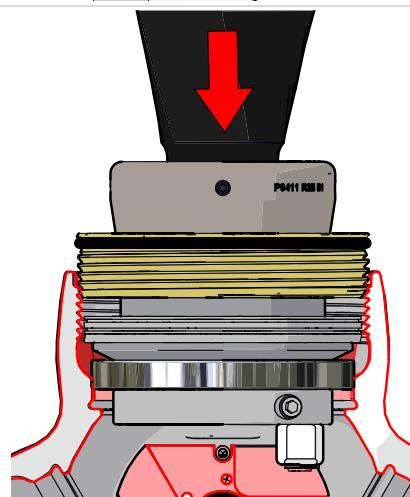

Turn off aircraft power before rotating propeller.

Step 2 Align Cam Follower

- Lower blade assembly into hub port whilst carefully aligning the cam follower (blade) into the slot of the pitch change slide (hub).

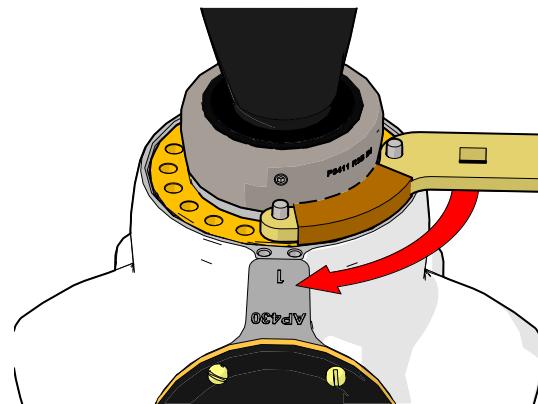
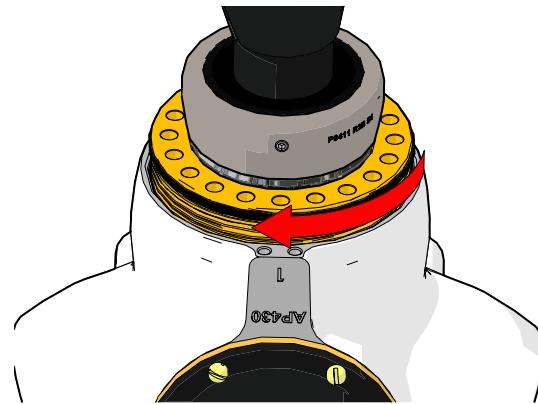
Note

By holding the blade retention nut with one hand and slightly twisting/moving the tip of the blade from side to side, the correct alignment is easily found. This can be felt when the blade feels restrained from further twisting at its base.



Step 3 Seat Blade Inside Hub

- With the cam-follower located inside the pitch change slide, gently wriggle the blade square into the hub, to partially seat the alignment bearing into the lower bore of the hub.



Note

The blade and mounted ferrule will partially slide into the hub, whereas the retention nut will remain seated on top of the hub threads.

Step 4 Tighten Retention Nut

- Use the Airmaster blade assembly spanner to firmly tighten the blade retention nut (CW):
 - The retention nut should initially wind in smoothly by hand. Resistance may be felt once the O-ring fits inside the hub (ensure O-ring is lubricated), however if resistance is met during initial tightening, the blade is improperly seated or misaligned. Remove blade from hub and recorrect alignment.
 - During initial tightening, restrain the blade with one hand to prevent it twisting or rotating inside the hub.
 - As the retention nut is wound in, clearance between the ferrule nut and retention nut reduces. Before these parts contact, the blade must be further seated inside the hub by repeating the previous step. This combination of incrementally tightening then further seating inside the hub may be repeated.

Caution

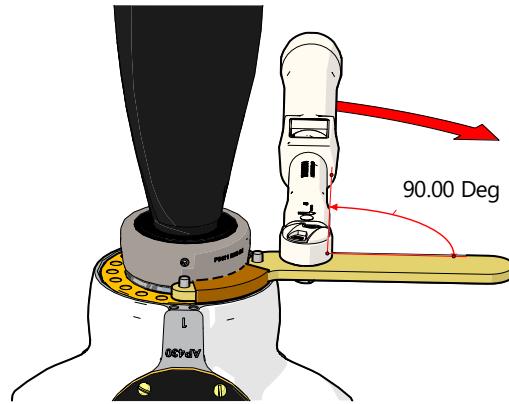
Support the head of the blade spanner to prevent it slipping out and causing damage.

Attention Blade spanner

3.3 Torque Retention Nut

⚠ Caution Support the head of the blade spanner to prevent it slipping out and causing damage.

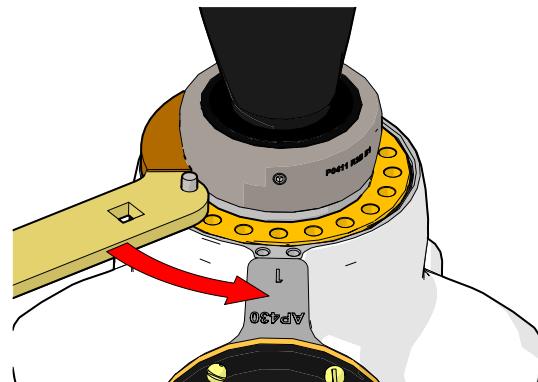
PROCEDURE


Step 1 Overtighten Retention Nut

- Fit a torque wrench (3/8" square drive) perpendicular to the blade spanner.
- Tighten retention nut to 130% of the prescribed final torque value (see step 3).

ⓘ Note

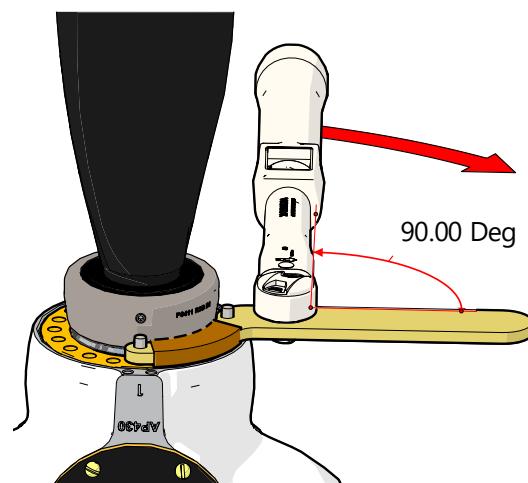
Overtightening helps to expel any excess grease which may cause improper blade seating.


ⓘ Attention Blade spanner, Torque wrench

Step 2 Back off Retention Nut

- Loosen retention nut a 1/4 turn.

ⓘ Attention Blade spanner



Step 3 Torque Retention Nut

- With torque wrench fitted perpendicular to blade spanner, retighten the retention nut to the prescribed pre-load torque setting below.

ⓘ Note

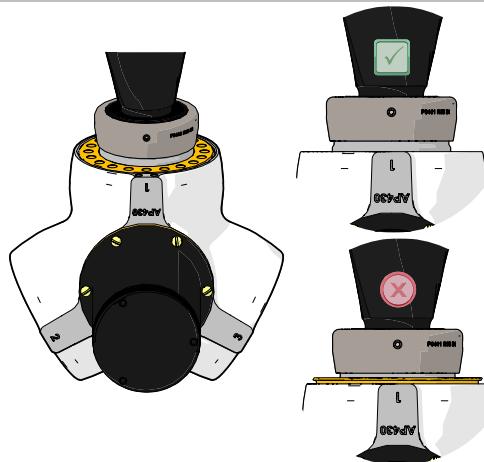
If the torque wrench is applied parallel to the blade spanner, a higher torque than that of the wrench will be applied. This torque may be calculated if the length of the wrench is known using the ratio of levers method, as used with a crow's foot extension or torque adapter.

PROPELLER MODEL

TORQUE

AP332	10.5Nm (8ft-lbs)
AP3xx	15Nm (12ft-lbs)
AP4xx	20Nm (15ft-lbs)
AP5xx	30Nm (23ft-lbs)
AP6xx	40Nm (30ft-lbs)

3.4 Check Blade Seating

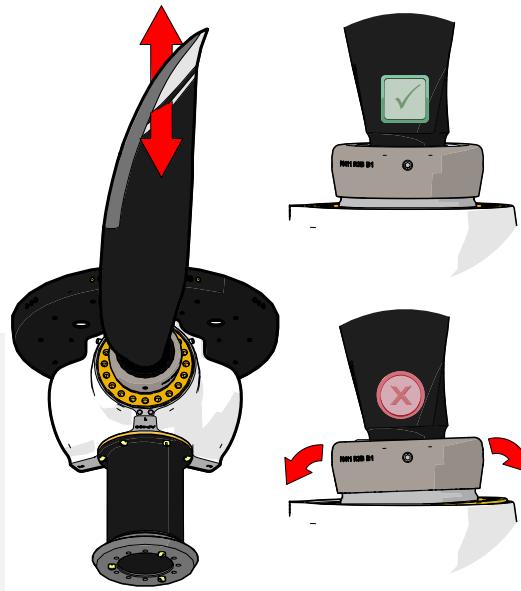

PROCEDURE

Step 1 Check Blade Seating

- Check top surface of retention nut is flush with face of hub port.

Caution

*If the retention nut is proud this may indicate that excess grease was packed inside the thrust-bearing bore of the hub, which is causing the blade to seat improperly. Remove the blade from the hub and inspect grease applied in this region in accordance with procedure **ASI-4-5**. Remove excess grease as necessary.*

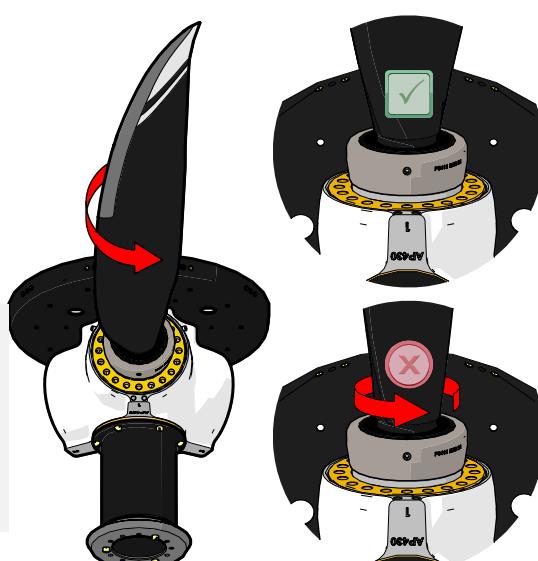


Step 2 Check Lateral Blade Movement

- Apply a moderate fore-to-aft force near the blade tip with one hand only and monitor the movement produced.
- No movement should be evident between the blade and the hub (ignore any deflection due to the bending of the blade itself).

Caution

*If the blade assembly rocks within the hub this may indicate that excess grease was packed inside the thrust-bearing bore which is causing the blade to seat improperly. Remove the blade from the hub and inspect grease applied in this region in accordance with procedure **ASI-4-5**. Remove excess grease as necessary.*



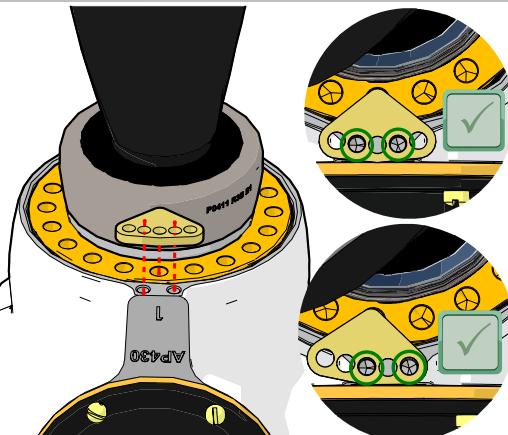
Step 3 Check Twisting Blade Movement

- Apply a moderate torque halfway along the blade by twisting it with one hand only and monitor the movement produced.
- No movement should be evident between the blade and the ferrule into which it is mounted.

Note

A slight perceptible movement between the ferrule and the hub is acceptable, this is due to backlash in the pitch change mechanism. Some engines which incorporate a reduction gearbox (e.g. Rotax) have a discernible backlash. Do not confuse this backlash with movement of the blade within the hub.

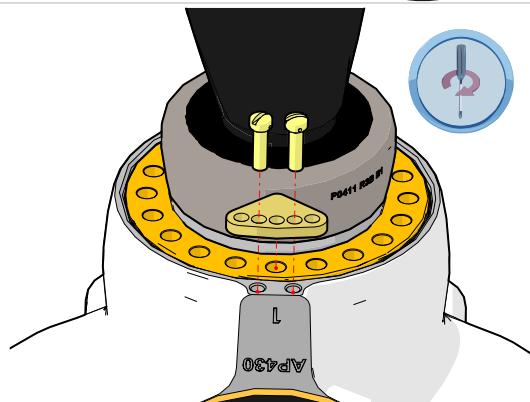
3.5 Lock Retention Nut


PROCEDURE

Step 1 Fit Securing Plate

- Fit spigot of securing plate (P0442) into front lightning hole of retention nut.
- Align two threaded holes (hub) with any two holes in the securing plate.

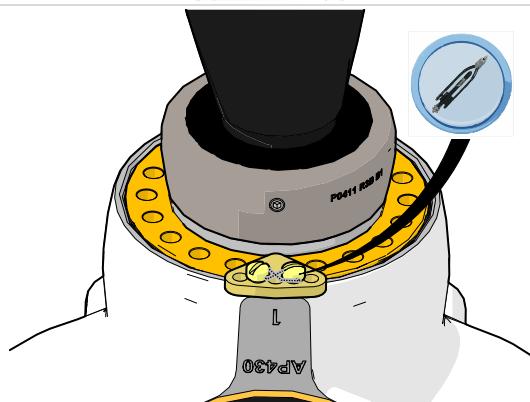
Note


Further tightening of the retention nut in the hub may be required to attain correct hole alignment. Up to 120% torque may be administered.

Step 2 Attach Securing Plate

- Attach securing plate to hub using (2) 10-32 UNC panhead screws (P0107).
- Torque screws to **2Nm (1.5ft-lbs)**.

Attention *Torque screwdriver (flathead)*



Step 3 Lock Securing Plate

- Secure both screws with lockwire. The single-wire method is acceptable.

Attention

Twist pliers, 0.025" S.S lockwire, Wire cutter

3.6 Subsequent Action

Perform the following tasks once this procedure is complete:

- Install remaining blade assemblies into propeller hub.
- Install spinner cone in accordance with procedure **ASI-4-7-1**. If necessary, adjust spinner front support in accordance with procedure **ASI-4-7-2**.

Note

After the propeller is run for the first time, operators may observe minor grease expulsion. This is acceptable during first run. The blades should be wiped clean with a clean rag.